

# **FCC Test Report** Project No. : 1709C099A Equipment : Smart Lite Giga Switch Test Model : VigorSwitch G1080 Series Model : N/A Applicant : DrayTek Corp. Address : No. 26, Fu Shing Rd., HuKou County, Hsin-Chu Industrial Park, Hsin-Chu, Taiwan R.O.C Date of Receipt : Sep. 19, 2017 Date of Test : Sep. 19, 2017 ~ Nov. 06, 2017 Issued Date : April 27, 2018 Tested by : BTL Inc. Som Wang (Sam Wang) **Testing Engineer Technical Manager** (Bill Zhang) Authorized Signatory Kevin Li) BTL INC. No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. TEL: +86-769-8318-3000 FAX: +86-769-8319-6000 NVLAP LAB CODE 200788-0



#### Declaration

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

**BTL**'s report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

**BTL**'s laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

#### Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.





| Table of Contents                                            | Page     |
|--------------------------------------------------------------|----------|
| REPORT ISSUED HISTORY                                        | 4        |
| 1. VERIFICATION                                              | 5        |
| 2 . SUMMARY OF TEST RESULTS                                  | 6        |
| 2.1 TEST FACILITY                                            | 7        |
| 2.2 MEASUREMENT UNCERTAINTY                                  | 7        |
| 3 . GENERAL INFORMATION                                      | 8        |
| 3.1 GENERAL DESCRIPTION OF EUT                               | 8        |
| 3.2 DESCRIPTION OF TEST MODES                                | 8        |
| 3.3 EUT OPERATING CONDITIONS                                 | 9        |
| 3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 9        |
| 3.5 DESCRIPTION OF SUPPORT UNITS                             | 10       |
| 4. EMC EMISSION TEST                                         | 11       |
| 4.1 CONDUCTED EMISSION MEASUREMENT                           | 11       |
| 4.1.1 POWER LINE CONDUCTED EMISSION                          | 11       |
| 4.1.2 MEASUREMENT INSTRUMENTS LIST<br>4.1.3 TEST PROCEDURE   | 11<br>12 |
| 4.1.3 TEST PROCEDURE<br>4.1.4 DEVIATION FROM TEST STANDARD   | 12       |
| 4.1.5 TEST SETUP                                             | 12       |
| 4.1.6 TEST RESULTS                                           | 12       |
| 4.2 RADIATED EMISSION MEASUREMENT                            | 15       |
| 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT                | 15       |
| 4.2.2 MEASUREMENT INSTRUMENTS LIST                           | 15       |
| 4.2.3 TEST PROCEDURE                                         | 16       |
| 4.2.4 DEVIATION FROM TEST STANDARD                           | 16       |
| 4.2.5 TEST SETUP                                             | 16       |
| 4.2.6 TEST RESULTS-BELOW 1GHZ                                | 16       |
| 5 . EUT TEST PHOTO                                           | 19       |



## **REPORT ISSUED HISTORY**

| Issued No.          | Description                                                                                                                                                                                                                      | Issued Date    |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| BTL-FCCE-1-1709C099 | Original Issue.                                                                                                                                                                                                                  | Nov. 07, 2017  |
| BTL-EMC-1-1709C099A | Compared with the previous report<br>(BTL-FCCE-1-1709C099), product, brand, model<br>name and applicant, manufacturer, factory<br>information are changed which does not affect the<br>test results, the rest are kept the same. | April 27, 2018 |





## 1. VERIFICATION

|                | Smart Lite Giga Switch<br>DrayTek Corp.                             |
|----------------|---------------------------------------------------------------------|
| Test Model :   | VigorSwitch G1080                                                   |
| Series Model   |                                                                     |
|                | DrayTek Corp.                                                       |
| Manufacturer : | DrayTek Corp.                                                       |
| Address :      | No. 26, Fu Shing Rd., HuKou County, Hsin-Chu Industrial Park,       |
|                | Hsin-Chu,Taiwan R.O.C                                               |
| Factory :      | Intelligent TechnologyINC.                                          |
| Address :      | Yuanhe 3 Street, Tongsha Industrial Zone, Dongcheng Area, Dongguan, |
|                | Guangdong, China                                                    |
| Date of Test : | Sep. 19, 2017 ~ Nov. 06, 2017                                       |
| Test Sample :  | Engineering Sample                                                  |
| Standard(s) :  | FCC Part 15, Subpart B                                              |
|                | ANSI C63.4-2014                                                     |

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCE-1-1709C099A) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of NVLAP according to the ISO-17025 quality assessment standard and technical standard(s).



# 2. SUMMARY OF TEST RESULTS

# Test procedures according to the technical standard(s):

| EMC Emission                             |                                  |         |          |                    |
|------------------------------------------|----------------------------------|---------|----------|--------------------|
| Standard(s)                              | Test Item                        | Limit   | Judgment | Remark             |
|                                          | Conducted Emission               | Class B | PASS     |                    |
| FCC Part15, Subpart B<br>ANSI C63.4-2014 | Radiated emission<br>Below 1 GHz | Class B | PASS     |                    |
|                                          | Radiated emission<br>Above 1 GHz | Class B | N/A      | NOTE(1)<br>NOTE(2) |

#### NOTE:

- (1) " N/A" denotes test is not applicable to this device.
- (2) The EUT's max operating frequency is 25MHz which does not exceed 108 MHz, so the test will not be performed.



## 2.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. BTL's test firm number for FCC: 854385

BTL's designation number for FCC: CN5020

#### 2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2  $U_{cispr}$  requirement.

The reported uncertainty of measurement  $\mathbf{y} \pm \mathbf{U}$ , where expanded uncertainty  $\mathbf{U}$  is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95**%.

A. Conducted Measurement :

| Test Site | Method | Measurement Frequency Range | U, (dB) |
|-----------|--------|-----------------------------|---------|
| DG-C02    | CISPR  | 150 kHz ~ 30MHz             | 2.32    |

B. Radiated Measurement :

| Test Site | Method | Measurement Frequency Range | Ant.<br>H / V | U, (dB) |
|-----------|--------|-----------------------------|---------------|---------|
|           |        | 150 kHz ~ 30MHz             |               | 2.32    |
|           |        | 9KHz ~ 30MHz                | V             | 3.79    |
| DG-CB03   |        | 9KHz ~ 30MHz                | Н             | 3.57    |
|           | CISPR  | 30MHz ~ 200MHz              | V             | 3.82    |
| (3m)      |        | 30MHz ~ 200MHz              | Н             | 3.78    |
|           |        | 200MHz ~ 1,000MHz           | V             | 4.10    |
|           |        | 200MHz ~ 1,000MHz           | Н             | 4.06    |

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.



## **3. GENERAL INFORMATION**

#### 3.1 GENERAL DESCRIPTION OF EUT

| Equipment        | Smart Lite Giga Switch                                                                |  |  |
|------------------|---------------------------------------------------------------------------------------|--|--|
| Brand Name       | DrayTek Corp.                                                                         |  |  |
| Test Model       | VigorSwitch G1080                                                                     |  |  |
| Series Model     | N/A                                                                                   |  |  |
| Model Difference | N/A                                                                                   |  |  |
| Power Source     | DC voltage supplied from AC/DC adapter.<br>Brand/ Model: DVE / DSA-6PFG-05 FUS 050100 |  |  |
| Power Rating     | I/P: AC 100-240V 50/60Hz 0.2A O/P: DC 5V 1A                                           |  |  |
| I/O Ports        | LAN port, Power port                                                                  |  |  |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

#### 3.2 DESCRIPTION OF TEST MODES

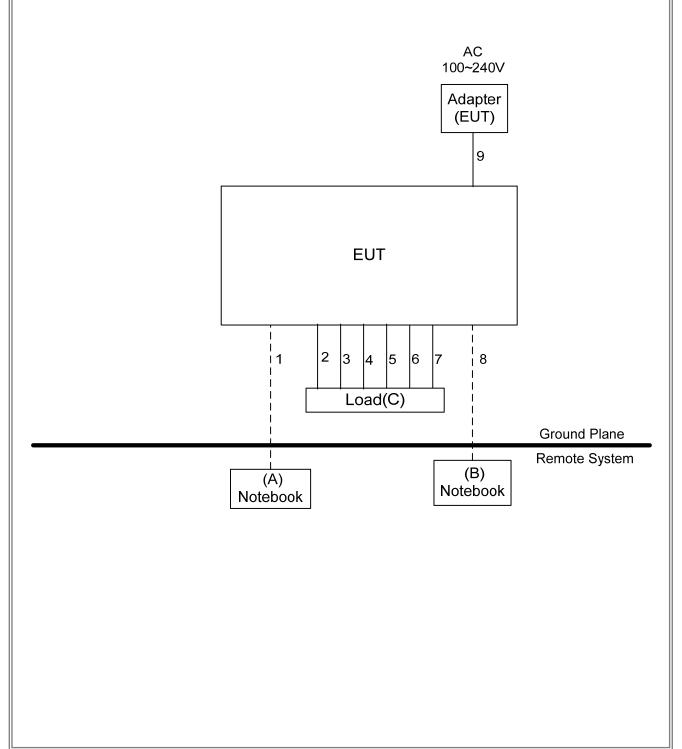
To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description |
|--------------|-------------|
| Mode 1       | FULL SYSTEM |

| For Conducted Test |             |  |
|--------------------|-------------|--|
| Final Test Mode    | Description |  |
| Mode 1             | FULL SYSTEM |  |

| For Radiated Test           |             |  |
|-----------------------------|-------------|--|
| Final Test Mode Description |             |  |
| Mode 1                      | FULL SYSTEM |  |




## 3.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

1. EUT Connected to Load via RJ45 cable.

2. EUT Connected to Notebook via RJ45 cable.

#### 3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED





#### 3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand | Model/Type No. | FCC ID | Series No. |
|------|-----------|-----------|----------------|--------|------------|
| А    | Notebook  | Lenovo    | E46L           | DOC    | EB22953770 |
| В    | Notebook  | Lenovo    | E445           | DOC    | MP-05Y56S  |
| С    | LOAD      | N/A       | N/A            | N/A    | N/A        |

| Iten | Shielded Type | Ferrite Core | Length | Note       |
|------|---------------|--------------|--------|------------|
| 1    | NO            | NO           | 10m    | RJ45 Cable |
| 2-7  | NO            | NO           | 1.5m   | RJ45 Cable |
| 8    | NO            | NO           | 10m    | RJ45 Cable |
| 9    | NO            | NO           | 1.5m   | DC Cable   |





## 4. EMC EMISSION TEST

#### 4.1 CONDUCTED EMISSION MEASUREMENT

#### 4.1.1 POWER LINE CONDUCTED EMISSION (FREQUENCY RANGE 150KHZ-30MHZ)

| FREQUENCY (MHz) | Class A    | (dBuV)  | Class B (dBuV) |           |  |
|-----------------|------------|---------|----------------|-----------|--|
|                 | Quasi-peak | Average | Quasi-peak     | Average   |  |
| 0.15 -0.5       | 79.00      | 66.00   | 66 - 56 *      | 56 - 46 * |  |
| 0.50 -5.0       | 73.00      | 60.00   | 56.00          | 46.00     |  |
| 5.0 -30.0       | 73.00      | 60.00   | 60.00          | 50.00     |  |

Note:

(1) The tighter limit applies at the band edges.

- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

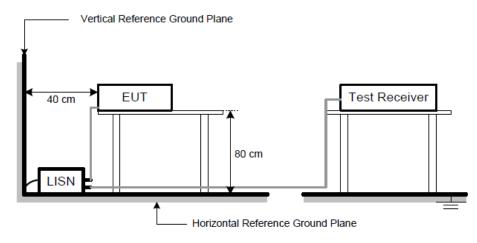
#### 4.1.2 MEASUREMENT INSTRUMENTS LIST

| Item | Kind of Equipment       | Manufacturer | Type No.                     | Serial No. | Calibrated until |
|------|-------------------------|--------------|------------------------------|------------|------------------|
| 1    | Measurement<br>Software | Farad        | EZ-EMC<br>Ver.NB-03A<br>1-01 | N/A        | N/A              |
| 2    | Cable                   | N/A          | RG223                        | 12m        | Oct. 19, 2018    |
| 3    | LISN                    | EMCO         | 3816/2                       | 00052765   | Mar. 26, 2018    |
| 4    | 50Ω Terminator          | SHX          | TF2-3G-A                     | 08122901   | Mar. 26, 2018    |
| 5    | TWO-LINE<br>V-NETWORK   | R&S          | ENV216                       | 101447     | Mar. 26, 2018    |
| 6    | EMI Test Receiver       | R&S          | ESCI                         | 100382     | Mar. 26, 2018    |

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.




## 4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- f. First the whole spectrum of emission caused by equipment under test(EUT) is recorded with Detector set to peak. Peak value recorded in table if the margin from QP Limit is larger than 2dB,otherwise,QP value is recorded, Measuring frequency range from 150KHz to 30MHz.

#### 4.1.4 DEVIATION FROM TEST STANDARD

No deviation

#### 4.1.5 TEST SETUP



#### 4.1.6 TEST RESULTS

#### Remark

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9KHz; SPA setting in RBW=10KHz, VBW =10KHz, Swp. Time = 0.3 sec./MHz ° Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10KHz, VBW=10KHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of 『Note』. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform ∘ In this case, a "\*" marked in AVG Mode column of Interference Voltage Measured.





| UT            | Smart Lite Giga Switch | Model Name        | VigorSwitch G1080       |  |  |  |  |  |  |
|---------------|------------------------|-------------------|-------------------------|--|--|--|--|--|--|
| Temperature   | 25°C                   | Relative Humidity | 53%                     |  |  |  |  |  |  |
| Test Voltage  | AC 120V/60Hz           | Phase             | Line                    |  |  |  |  |  |  |
| Test Mode     | FULL SYSTEM            | FULL SYSTEM       |                         |  |  |  |  |  |  |
| Test Engineer | Sam Wang               |                   |                         |  |  |  |  |  |  |
| 80 dBuV       |                        |                   |                         |  |  |  |  |  |  |
| 40            |                        |                   | 9   X   10   X   12   X |  |  |  |  |  |  |
| 0.15          | 0.50 1.00              | 5.00              | 10.00 30.00(MHz)        |  |  |  |  |  |  |

| Freq.   | Level                                                                                                                | Factor                                                                                                                                                                                              | ment                                                                                                                                                                                                                                                                                                                                                                                                                       | Limit                                                                                                                                                                                                                                                                 | Margin                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                |
|---------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz     | dBuV                                                                                                                 | dB                                                                                                                                                                                                  | dBuV                                                                                                                                                                                                                                                                                                                                                                                                                       | dBuV                                                                                                                                                                                                                                                                  | dB                                                                                                                                                                                                                                                                                                                                    | Detector                                                                                                                                                                                                                                                                                                                                                                       |
| 0.4110  | <b>33. 9</b> 2                                                                                                       | 9.75                                                                                                                                                                                                | 43.67                                                                                                                                                                                                                                                                                                                                                                                                                      | 57.63                                                                                                                                                                                                                                                                 | -13.96                                                                                                                                                                                                                                                                                                                                | QP                                                                                                                                                                                                                                                                                                                                                                             |
| 0.4110  | 22. 50                                                                                                               | 9.75                                                                                                                                                                                                | 32.25                                                                                                                                                                                                                                                                                                                                                                                                                      | 47.63                                                                                                                                                                                                                                                                 | -15. 38                                                                                                                                                                                                                                                                                                                               | AVG                                                                                                                                                                                                                                                                                                                                                                            |
| 0.8070  | 29.31                                                                                                                | 9.76                                                                                                                                                                                                | 39.07                                                                                                                                                                                                                                                                                                                                                                                                                      | 56. 00                                                                                                                                                                                                                                                                | -16. 93                                                                                                                                                                                                                                                                                                                               | QP                                                                                                                                                                                                                                                                                                                                                                             |
| 0.8070  | 18. 60                                                                                                               | 9.76                                                                                                                                                                                                | 28.36                                                                                                                                                                                                                                                                                                                                                                                                                      | 46.00                                                                                                                                                                                                                                                                 | -17.64                                                                                                                                                                                                                                                                                                                                | AVG                                                                                                                                                                                                                                                                                                                                                                            |
| 1.3875  | 29.83                                                                                                                | 9.80                                                                                                                                                                                                | 39.63                                                                                                                                                                                                                                                                                                                                                                                                                      | 56. 00                                                                                                                                                                                                                                                                | -16. 37                                                                                                                                                                                                                                                                                                                               | QP                                                                                                                                                                                                                                                                                                                                                                             |
| 1.3875  | 18.21                                                                                                                | 9.80                                                                                                                                                                                                | 28. <b>0</b> 1                                                                                                                                                                                                                                                                                                                                                                                                             | 46.00                                                                                                                                                                                                                                                                 | -17.99                                                                                                                                                                                                                                                                                                                                | AVG                                                                                                                                                                                                                                                                                                                                                                            |
| 9.1185  | 36.73                                                                                                                | 10.01                                                                                                                                                                                               | 46.74                                                                                                                                                                                                                                                                                                                                                                                                                      | 60.00                                                                                                                                                                                                                                                                 | -13.26                                                                                                                                                                                                                                                                                                                                | QP                                                                                                                                                                                                                                                                                                                                                                             |
| 9.1185  | 25.31                                                                                                                | 10.01                                                                                                                                                                                               | 35.32                                                                                                                                                                                                                                                                                                                                                                                                                      | 50. 00                                                                                                                                                                                                                                                                | -14.68                                                                                                                                                                                                                                                                                                                                | AVG                                                                                                                                                                                                                                                                                                                                                                            |
| 11.0940 | 37.42                                                                                                                | 10.09                                                                                                                                                                                               | 47.51                                                                                                                                                                                                                                                                                                                                                                                                                      | 60.00                                                                                                                                                                                                                                                                 | -12.49                                                                                                                                                                                                                                                                                                                                | QP                                                                                                                                                                                                                                                                                                                                                                             |
| 11.0940 | 26.60                                                                                                                | 10.09                                                                                                                                                                                               | 36.69                                                                                                                                                                                                                                                                                                                                                                                                                      | 50. 00                                                                                                                                                                                                                                                                | -13. 31                                                                                                                                                                                                                                                                                                                               | AVG                                                                                                                                                                                                                                                                                                                                                                            |
| 21.6645 | 32.26                                                                                                                | 10.29                                                                                                                                                                                               | 42.55                                                                                                                                                                                                                                                                                                                                                                                                                      | 60.00                                                                                                                                                                                                                                                                 | -17.45                                                                                                                                                                                                                                                                                                                                | QP                                                                                                                                                                                                                                                                                                                                                                             |
| 21.6645 | 21.90                                                                                                                | 10.29                                                                                                                                                                                               | 32.19                                                                                                                                                                                                                                                                                                                                                                                                                      | 50.00                                                                                                                                                                                                                                                                 | -17.81                                                                                                                                                                                                                                                                                                                                | AVG                                                                                                                                                                                                                                                                                                                                                                            |
|         | MHz<br>0.4110<br>0.4110<br>0.8070<br>0.8070<br>1.3875<br>1.3875<br>9.1185<br>9.1185<br>11.0940<br>11.0940<br>21.6645 | Freq.     Level       MHz     dBuV       0.4110     33.92       0.4110     22.50       0.8070     29.31       0.8070     18.60       1.3875     29.83       1.3875     18.21       9.1185     36.73 | Freq.     Level     Factor       MHz     dBuV     dB       0.4110     33.92     9.75       0.4110     22.50     9.75       0.4110     22.50     9.75       0.8070     29.31     9.76       0.8070     18.60     9.76       1.3875     29.83     9.80       1.3875     18.21     9.80       9.1185     36.73     10.01       9.1185     25.31     10.01       11.0940     37.42     10.09       11.0940     26.60     10.29 | Freq.LevelFactormentMHzdBuVdBdBuV0.411033.929.7543.670.411022.509.7532.250.807029.319.7639.070.807018.609.7628.361.387529.839.8039.631.387518.219.8028.019.118536.7310.0146.749.118525.3110.0135.3211.094037.4210.0947.5111.094026.6010.0936.6921.664532.2610.2942.55 | Freq.LevelFactormentLimitMHzdBuVdBdBuVdBuV0.411033.929.7543.6757.630.411022.509.7532.2547.630.807029.319.7639.0756.000.807018.609.7628.3646.001.387529.839.8039.6356.001.387518.219.8028.0146.009.118536.7310.0146.7460.009.118525.3110.0135.3250.0011.094037.4210.0947.5160.0011.094026.6010.0936.6950.0021.664532.2610.2942.5560.00 | Freq.LevelFactormentLimitMarginMHzdBuVdBdBuVdBuVdB0.411033.929.7543.6757.63-13.960.411022.509.7532.2547.63-15.380.807029.319.7639.0756.00-16.930.807018.609.7628.3646.00-17.641.387529.839.8039.6356.00-16.371.387518.219.8028.0146.00-17.999.118536.7310.0146.7460.00-13.269.118525.3110.0947.5160.00-12.4911.094037.4210.0936.6950.00-13.3121.664532.2610.2942.5560.00-17.45 |





|           |                  |         |              | _            |          |             |      |           |              |                 |                   |                   |          |          |                   |          |     | 1            |                  |          |        |
|-----------|------------------|---------|--------------|--------------|----------|-------------|------|-----------|--------------|-----------------|-------------------|-------------------|----------|----------|-------------------|----------|-----|--------------|------------------|----------|--------|
| EUT       |                  |         |              | ę            | Sma      | art         | Lite | e G       | ig           | a Switch        |                   | Model Name        |          |          | VigorSwitch G1080 |          |     |              |                  |          |        |
| Гетр      | eratu            | re      |              | 2            | 25°(     | С           |      |           |              |                 |                   | Relative Humidity |          |          |                   | 5        | 3%  |              |                  |          |        |
| Test ∖    | /oltag           | je      |              | F            | ٩C       | 120         | )V/  | 60        | Hz           | 2               |                   | Ph                | ase      |          |                   |          |     | N            | leutral          |          |        |
| Test N    | Лode             |         |              | F            | UL       | ULL SYSTEM  |      |           |              |                 |                   |                   |          |          |                   |          |     |              |                  |          |        |
| Test E    | Engin            | eer     |              | S            | Sam Wang |             |      |           |              |                 |                   |                   |          |          |                   |          |     |              |                  |          |        |
| 80 di     |                  |         |              |              |          |             |      |           |              |                 |                   |                   |          |          |                   |          |     |              |                  |          |        |
| Ĩ         |                  |         |              |              | Τ        | Τ           |      | Π         | Т            |                 |                   |                   |          |          |                   |          |     | Τ            |                  |          |        |
|           |                  |         |              |              |          |             |      | Ц         |              |                 |                   |                   |          |          |                   |          |     |              |                  |          |        |
| -         |                  |         |              |              |          |             |      |           |              |                 |                   |                   |          |          |                   |          |     |              |                  |          |        |
| -         |                  |         | +-           | +            | ╀        | +           | ┢    | $\vdash$  | ╀            |                 | +-                |                   | <u> </u> |          |                   | Н        | _   | ╋            |                  |          |        |
| ŀ         |                  |         |              |              | ┢        | ╈           | ┢    | H         | ╈            |                 |                   |                   |          |          |                   |          |     |              |                  |          |        |
|           |                  |         |              | $\mathbf{+}$ | t        |             |      | Ħ         | t            | _               |                   |                   |          |          | F                 | Н        | 1   | t            | 9                | <u> </u> |        |
| 40        |                  |         |              | 1            |          |             | 3    |           |              | 5<br>X          |                   |                   |          |          |                   |          |     | A            | <u> </u>         | 11<br>X  |        |
|           |                  | m       | 1 m          |              | ſγ       | η Κ         | M    | ħ         | r            | n man           | <b>小</b> 州        | -                 | MM       | L.       |                   | -        | uľ  | 8<br>*       | 10"1, 1/1<br>  × | 12       |        |
| H         | $\mathbb{A}^{+}$ | · • • • | ¥            | ¶`-          | ┼        | ╀           | -×   | ╞┼        | <b>'</b> +'  | ×               | - <del> </del> r- | <b>4</b> .11      |          | 774      | <b>1</b> 41       | $\vdash$ | -   | +            |                  | - X      |        |
|           |                  |         |              |              |          |             |      |           |              |                 |                   |                   |          |          |                   |          |     |              |                  |          | 1      |
|           |                  |         |              |              | Τ        | Τ           | Γ    | Π         | T            |                 |                   |                   |          |          |                   | Π        | T   | T            |                  |          |        |
| -         |                  |         | _            | _            | ╞        | +           | ╞    | $\square$ | $\downarrow$ |                 | _                 |                   |          | <u> </u> | <u> </u>          |          |     | $\downarrow$ |                  |          |        |
|           |                  |         |              |              |          |             |      |           |              |                 |                   |                   |          |          |                   |          |     |              |                  |          |        |
| 0<br>0.15 |                  |         |              |              | 50       |             |      | L<br>L    | .00          |                 |                   |                   |          | 5.0      | 0                 |          |     | 10           | 00               | 30.00    | )(MHz) |
|           |                  |         |              | _            |          |             |      |           |              |                 |                   |                   |          |          | -                 |          |     |              |                  |          |        |
| No.       | Free             | 1.      | Read<br>Leve |              |          | Cor:<br>Fac |      |           | п            | leasure<br>ment | Lim               |                   | Mar      | gin      |                   |          |     |              |                  |          |        |
|           | MHz              |         | dBuV         |              |          | IB          |      |           |              | lBuV            | dBu               |                   | dB       |          |                   | Det      | ect | tor          |                  |          |        |
| 1*        | 0.40             |         | 36.4         |              |          | ). 65       |      |           |              | 6. 14           | 57.               |                   | -11      |          |                   | QP       |     |              |                  |          |        |

|     | MHz             | dBuV  | dB    | dBuV  | dBuV           | dB      | Detector |
|-----|-----------------|-------|-------|-------|----------------|---------|----------|
| 1 * | 0.4065          | 36.49 | 9.65  | 46.14 | 57.72          | -11. 58 | QP       |
| 2   | 0.4065          | 23.79 | 9.65  | 33.44 | 47.72          | -14.28  | AVG      |
| 3   | 0.7799          | 31.43 | 9.66  | 41.09 | <b>56.00</b>   | -14.91  | QP       |
| 4   | 0.7799          | 20.60 | 9.66  | 30.26 | 46.00          | -15.74  | AVG      |
| 5   | 1. <b>0</b> 815 | 31.47 | 9.68  | 41.15 | 56. <b>00</b>  | -14.85  | QP       |
| 6   | 1. <b>0</b> 815 | 21.20 | 9.68  | 30.88 | 46.00          | -15.12  | AVG      |
| 7   | 9. 0285         | 34.88 | 9.95  | 44.83 | 60.00          | -15.17  | QP       |
| 8   | 9.0285          | 23.70 | 9.95  | 33.65 | 50.00          | -16.35  | AVG      |
| 9   | 11.5125         | 35.10 | 10.08 | 45.18 | 60.00          | -14.82  | QP       |
| 10  | 11. 5125        | 24.11 | 10.08 | 34.19 | <b>50.00</b>   | -15.81  | AVG      |
| 11  | 21.6060         | 30.70 | 10.41 | 41.11 | 60.00          | -18.89  | QP       |
| 12  | 21.6060         | 19.30 | 10.41 | 29.71 | 5 <b>0. 00</b> | -20. 29 | AVG      |



#### 4.2 RADIATED EMISSION MEASUREMENT

#### 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Below 1 GHz

Measurement Method and Applied Limits: ANSI C63.4:

| _                  | Class A                  | (at 10m)                   | Class B (at 3m)          |                            |  |  |
|--------------------|--------------------------|----------------------------|--------------------------|----------------------------|--|--|
| Frequency<br>(MHz) | (uV/m)<br>Field strength | (dBuV/m)<br>Field strength | (uV/m)<br>Field strength | (dBuV/m)<br>Field strength |  |  |
| 30 - 88            | 90                       | 39                         | 100                      | 40                         |  |  |
| 88 - 216           | 150                      | 43.5                       | 150                      | 43.5                       |  |  |
| 216 - 960          | 210                      | 46.4                       | 200                      | 46                         |  |  |
| Above 960          | 300                      | 49.5                       | 500                      | 54                         |  |  |

NOTE:

- (1) The limit for radiated test was performed according to as following: FCC Part 15, Subpart B
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m). 3m Emission level = 10m Emission level + 20log(10m/3m).
  (4) The test sector backstand test for the unique.
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

#### 4.2.2 MEASUREMENT INSTRUMENTS LIST

| Item | Kind of Equipment       | Manufacturer | Type No.                           | Serial No.  | Calibrated until |  |
|------|-------------------------|--------------|------------------------------------|-------------|------------------|--|
| 1    | Antenna                 | Schwarbeck   | VULB9160                           | 9160-3232   | Mar. 26, 2018    |  |
| 2    | Amplifier               | HP           | 8447D                              | 2944A09673  | Oct. 19, 2018    |  |
| 3    | Receiver                | Agilent      | N9038A                             | MY52130039  | Aug. 20, 2018    |  |
| 4    | Cable                   | emci         | LMR-400(30<br>MHz-1GHz)(<br>8m+5m) | N/A         | Jun. 26, 2018    |  |
| 5    | Controller              | СТ           | SC100                              | N/A         | N/A              |  |
| 6    | Controller              | MF           | MF-7802                            | MF780208416 | N/A              |  |
| 7    | Measurement<br>Software | Farad        | EZ-EMC<br>Ver.NB-03A1<br>-01       | N/A         | N/A              |  |

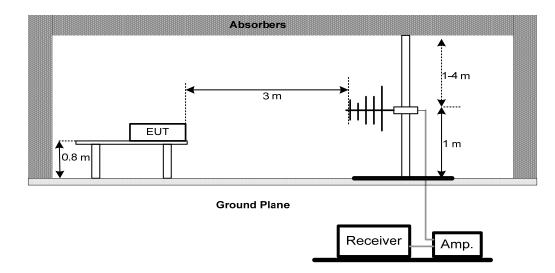
Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.





#### 4.2.3 TEST PROCEDURE


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- e. For the actual test configuration, please refer to the related Item Block Diagram of system tested (please refer to 3.3).

#### 4.2.4 DEVIATION FROM TEST STANDARD

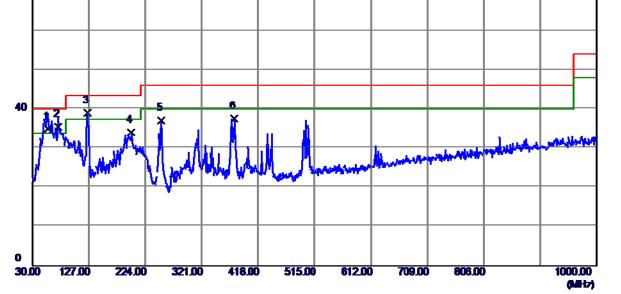
No deviation

#### 4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz



#### 4.2.6 TEST RESULTS-BELOW 1GHZ

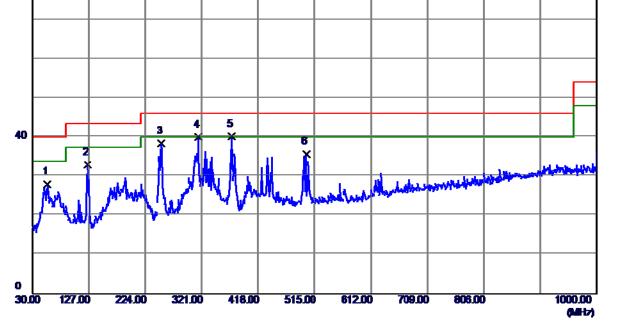

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform ∘
- (2) Measuring frequency range from 30MHz to 1000MHz  $\circ$
- (3) If the peak scan value lower limit more than 20dB, then this signal data does not show in table  $\circ$





| EUT           | Smart Lite Giga Switch | Model Name        | VigorSwitch G1080 |  |  |  |  |  |  |
|---------------|------------------------|-------------------|-------------------|--|--|--|--|--|--|
| Temperature   | 25°C                   | Relative Humidity | 45%               |  |  |  |  |  |  |
| Test Voltage  | AC 120V/60Hz           | Polarization      | Vertical          |  |  |  |  |  |  |
| Test Mode     | FULL SYSTEM            | FULL SYSTEM       |                   |  |  |  |  |  |  |
| Test Engineer | Sam Wang               |                   |                   |  |  |  |  |  |  |
| 80 dBuV/m     |                        |                   |                   |  |  |  |  |  |  |
|               |                        |                   |                   |  |  |  |  |  |  |
|               |                        |                   |                   |  |  |  |  |  |  |
|               |                        |                   |                   |  |  |  |  |  |  |




| No. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure<br>ment | Limit  | Margin |          |
|-----|----------|------------------|-------------------|-----------------|--------|--------|----------|
|     | MHz      | dBuV/m           | dB                | dBuV/m          | dBuV/m | dB     | Detector |
| 1   | 57.1600  | 48.73            | -13.77            | 34.96           | 40.00  | -5.04  | QP       |
| 2 * | 74.6200  | 52.33            | -16.75            | 35. 58          | 40.00  | -4.42  | QP       |
| 3   | 125.0600 | 53.68            | -14.70            | 38.98           | 43.50  | -4.52  | QP       |
| 4   | 200.7200 | 47.41            | -13.36            | <b>34.05</b>    | 43.50  | -9.45  | QP       |
| 5   | 252.1300 | 51.75            | -14.58            | 37.17           | 46.00  | -8.83  | QP       |
| 6   | 377.2600 | 48.63            | -10.99            | 37.64           | 46.00  | -8.36  | QP       |





| EUT           | Smart Lite Giga Switch | Model Name        | VigorSwitch G1080 |  |  |  |  |  |
|---------------|------------------------|-------------------|-------------------|--|--|--|--|--|
| Temperature   | 25°C                   | Relative Humidity | 45%               |  |  |  |  |  |
| Test Voltage  | AC 120V/60Hz           | Polarization      | Horizontal        |  |  |  |  |  |
| Test Mode     | FULL SYSTEM            |                   |                   |  |  |  |  |  |
| Test Engineer | Sam Wang               |                   |                   |  |  |  |  |  |
| 80 dBuV/m     |                        |                   |                   |  |  |  |  |  |
|               |                        |                   |                   |  |  |  |  |  |
|               |                        |                   |                   |  |  |  |  |  |

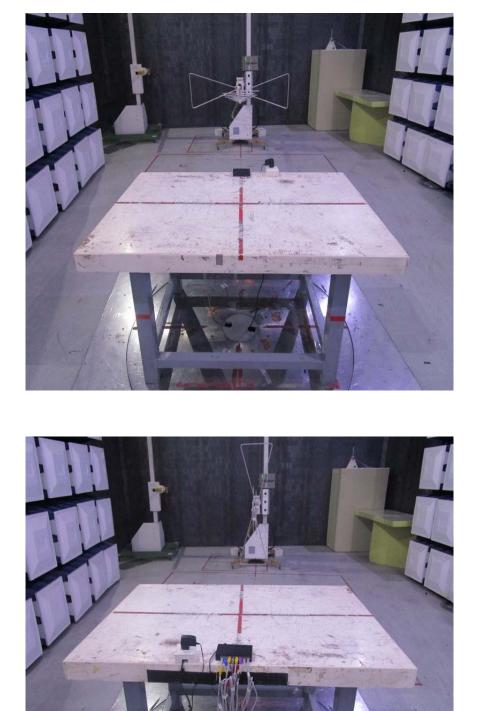


| MHz     dBuV/m     dB     dBuV/m     dBuV/m     dB     Detector       1     56.1900     41.66     -13.68     27.98     40.00     -12.02     QP       2     125.0600     47.73     -14.70     33.03     43.50     -10.47     QP |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                |  |
| 2 125. 0600 47. 73 -14. 70 33. 03 43. 50 -10. 47 QP                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                |  |
| 3 252.1300 53.01 -14.58 38.43 46.00 -7.57 QP                                                                                                                                                                                   |  |
| 4 315. 1800 51. 96 -11. 99 39. 97 46. 00 -6. 03 QP                                                                                                                                                                             |  |
| 5 * 372. 4100 51. 18 -11. 05 40. 13 46. 00 -5. 87 QP                                                                                                                                                                           |  |
| 6 500. 4500 43. 62 -7. 92 35. 70 46. 00 -10. 30 QP                                                                                                                                                                             |  |





# 5. EUT TEST PHOTO


Conducted Emission







## Radiated emission below 1 GHz

